Dimensionality and the stability of the Brunn-Minkowski inequality
نویسندگان
چکیده
منابع مشابه
Stability Results for the Brunn-minkowski Inequality
The Brunn-Miknowski inequality gives a lower bound on the Lebesgue measure of a sumset in terms of the measures of the individual sets. This classical inequality in convex geometry was inspired by issues around the isoperimetric problem and was considered for a long time to belong to geometry, where its significance is widely recognized. However, it is by now clear that the Brunn-Miknowski ineq...
متن کاملQuantitative stability for the Brunn-Minkowski inequality
We prove a quantitative stability result for the Brunn-Minkowski inequality: if |A| = |B| = 1, t ∈ [τ, 1−τ ] with τ > 0, and |tA+(1−t)B| ≤ 1+δ for some small δ, then, up to a translation, both A and B are quantitatively close (in terms of δ) to a convex set K.
متن کاملThe Brunn-Minkowski Inequality
In 1978, Osserman [124] wrote an extensive survey on the isoperimetric inequality. The Brunn-Minkowski inequality can be proved in a page, yet quickly yields the classical isoperimetric inequality for important classes of subsets of Rn, and deserves to be better known. This guide explains the relationship between the Brunn-Minkowski inequality and other inequalities in geometry and analysis, an...
متن کاملThe Log-brunn-minkowski Inequality
For origin-symmetric convex bodies (i.e., the unit balls of finite dimensional Banach spaces) it is conjectured that there exist a family of inequalities each of which is stronger than the classical Brunn-Minkowski inequality and a family of inequalities each of which is stronger than the classical Minkowski mixed-volume inequality. It is shown that these two families of inequalities are “equiv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE
سال: 2014
ISSN: 2036-2145,0391-173X
DOI: 10.2422/2036-2145.201111_005